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Non-Gaussian distributions are frequently observed in a variety of systems such as physical,
chemical, economical or social systems. Examples of non-Gaussian distributions are Lévy
stable distributions, and Tsallis q-generalized distributions in the non-extensive statistical
mechanics based on Tsallis’ entropy [1]. A common key feature of them is the presence of
an asymptotic power-law tail.
There is another type of non-Gaussian distributions with asymptotic power-law tails, which is
called a κ-generalized distribution. It has been studied originally in the context of statistical
physics by Kaniadakis [2]. Maximizing Kaniadakis’ κ-entropy under appropriate constraints
leads to a κ-generalized Gaussian distribution, which can be written as

gκ(x) ∝ expκ

(
−βx2

)
. (1)

Here κ is a real deformed parameter (−1 < κ < 1), β is a constant, and expκ(x) is κ-
exponential function defined by

expκ(x) =
(
κx +

√
1 + κ2x2

) 1
κ

. (2)

This expκ(x) reduces to the standard exp(x) in the limit of κ = 0. Note that for a large value
of x, the κ-exponential function obeys a power-law as expκ(x) ∼ x1/κ, whereas for a small
value of x it approximately behaves as exp(x). The κ-generalized distributions have been
shown to well explain, for example, the energy distributions of cosmic rays [2], and the size
distribution of personal incomes [3]. We studied the asymptotic behavior of the κ-generalized
nonlinear Fokker-Planck(FP) equation, which stationary solution is a κ-generalized Gaussian
distribution [4]. Furthermore a κ-generalized Gaussian is also derived by generalizing Gauss’
law of error [5].

On the other hand, Lutz [6] has recently shown the connection between anomalous transport
in an optical lattice and Tsallis q-generalized distributions based on a linear FP equation
with a nonlinear drift coefficient,

Kol(p) = − αp

1 +
(

p
pc

)2 . (3)

The drift Kol(p) represents a capture force with damping coefficient α, and this force acts
only on slow particles whose momentum is smaller than the capture momentum pc. A
characteristic feature of this nonlinear drift is that: for a small momentum |p| < pc, the drift
is approximately linear Kol(p) ∼ −p, i.e., it reduces to a familiar Ornstein-Uhlenbeck process;
whereas for a large momentum |p| > pc, it asymptotically decreases as Kol(p) ∼ −1/p. In
contrast to most systems with power-law distributions which are often described by nonlinear
kinetic equations [7], the above process is described by an ordinary linear FP equation.
Consequently standard methods can be applied to analyze the problem. Lutz also pointed
out an explicit correspondence between ergodicity breaking in a system described by power-
law tail distributions and the divergences of the moments of these distributions. It is worth



stressing that the Lutz analysis is not restricted to anomalous transport in an optical lattice,
but can be applied to a wide class of systems described by a FP equation with a drift
coefficient decaying asymptotically as −1/p.

In this contribution we consider an ordinary linear FP equation

∂

∂t
w(p, t) = − ∂

∂p

(
K(p) w(p, t)

)
+ D

∂2

∂p2
w(p, t), (4)

with another type of momentum-dependent drift coefficient,

K(p) = − αp√
1 +

(
p
pc

)4
, (5)

and a constant diffusion coefficient D. Note that this drift coefficient K(p) also asymptoti-
cally decreases as −1/p for a large momentum |p| > pc.
It is shown that the stationary solution of this FP equation (4) with the nonlinear drift
coefficient (5) is nothing but a κ-generalized Gaussian distribution (1). Similar to a q-
distribution in the Lutz analysis, the deformed parameter κ can be expressed in terms of the
microscopic parameters as

κ =
2D

αp2
c

, (6)

which allow us to give a physical interpretation of the κ-distribution.
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