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Order, disorder and recurrence are common features observed in complex sequences that can be 
observed in many fields, like finance, economics, biology, physiology and other natural 
phenomena. On the other hand, these can be produced by chaotic dynamical systems and one 
way to analyze them is via symbolic dynamics, a mathematical-statistical technique that allow 
the detection of the underlying topological and metrical structures in the time series. 
 
Symbolic dynamics [3] is a powerful tool initially developed for the investigation of discrete 
dynamical systems. The main idea consists in constructing a partition, that is, a finite collection 
of disjoint subsets whose union is the state space. By identifying each subset with a distinct 
symbol, we obtain sequences of symbols that correspond to each trajectory of the original 
system. 
 
One of the major problem in defining a “good” symbolic description of the corresponding time 
series, is to obtain a generating partition, that is, the assignment of symbolic sequences to 
trajectories is unique, up to a set of measure zero. Unfortunately, this is not a trivial task, and, 
moreover, for observed time series the notion of a generating partition is no longer well defined 
in the presence of noise. 
 
In this paper we apply symbolic shadowing [2], a deterministic algorithm using tessellations, in 
order to estimate a generating partition for two distinct time series and consequently to compute 
their metric and topological entropies. This algorithm allows producing partitions such that the 
symbolic sequences uniquely encode all periodic points up to some order. 
 
The first time series we consider is generated by an iterated function system (IFS). We choose 
this kind of map because generating partitions are quite well understood for IFS and there are 
rigorous mathematical methods to compute metric and topological invariants ([4],[5]), like 
entropies, escape rates and fractal dimensions. The methods used in this case are based on 
weighted Markov matrices. Hence, it is easy to compare the results obtained by symbolic 
shadowing and Markov matrices. 
 
The second time series we consider is a financial time series, the Portuguese Stock Index (PSI20). 



We also apply the symbolic shadowing algorithm in order to compute entropies and we compare 
these results with those obtained by considering the Pesin’s identity (the metric entropy is equal 
to the sum of positive Lyapunov exponents). To obtain the Lyapunov exponents, we reconstruct 
the state space of PSI20 by applying an embedding process [A] and also use the Wolf et al. [6] 
algorithm. Moreover, we compute the Rényi entropy, since the symbolic block entropies are 
special cases of Rényi entropies. 
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